

www.monarchindustrial.com.au www.monarchasiapacific.com.au

SB Series Simplex Basket Strainers

6" TO 8" PVC AND CPVC

KEY FEATURES

- PVC and CPVC
- Ergonomic Hand-Removable Cover
- In-Line or Loop Connections
- External Cover Threads
- Integral Flat Mounting Bases
- PVC or CPVC Baskets Standard

OPTIONS

- Stainless Steel, Monel[®], Hastelloy[®] and Titanium Strainer Baskets
- Pressure Differential Gauge and Switch
- Baskets Available with Perforated or Mesh Liners

MATERIALS

- PVC Cell Class 12454 per ASTM D1784
- CPVC Cell Class 23447 per ASTM D1784
- FPM and EPDM O-Ring Seals

TECHNICAL INFORMATION

BASKET OPTIONS SELECTION CHART PERFORATION SIZE **MATERIAL SEALS** CONNECTION **MATERIAL RATING** 1/32" 20 FPM or EPDM 150 PSI @ 70°F 6"-8" PVC or CPVC Flanged (DN150 - DN200) Non-Shock 1/16" 40 1/8" 60 SSTL, Hastelloy, 5/32" 80 Monel and Titanium 3/16" 100 1/4" 200 3/8" 325 1/8" N/A 3/16" PVC, CPVC and PP

SB Series Simplex Basket Strainers

6" TO 8" PVC AND CPVC

www.monarchindustrial.com.au www.monarchasiapacific.com.au

TECHNICAL INFORMATION, CONTINUED

PARTS LIST

- 1. Body
- 2. Cover
- 3. Vent Plug and O-Ring
- 4. Drain Plug and O-Ring
- 5. Basket
- 6. Flange (Optional)
- 7. Cover O-Ring

DIMENSIONS							WEIGHT Ibs/kg					
SIZE in/DN	A in/mm	B in/mm	C in/mm	D in/mm	E in/mm	F in/mm	J in/mm	K in/mm	L in/mm	SOC/THD	FLANGED	VOLUME gal/LT
6/150	N/A	36.07/871	18.00/457	12.46/316	28.99/736	13.50/298	21.80/554	22.42/569	39.90/1013	N/A	60.00/27.21	6.80/25.74
8/200	N/A	36.07/871	18.00/457	12.46/316	28.99/736	13.50/298	28.75/730	25.44/640	39.90/1013	N/A	80.00/36.28	9.00/34.07

Dimensions are subject to change without notice - consult factory for installation information

PRESSURE DROP CALCULATIONS

BASKET PERFORATION CORRECTION FACTORS

For 6" to 8" Strainers								
Plas	stic	Stainless Steel						
1/8″	2.00	1/32″	2.25	20 Mesh	2.16			
3/16"	1.50	1/16″	2.03	40 Mesh	2.79			
		1/8″	1.58	60 Mesh	3.28			
		5/32"	1.00	80 Mesh	3.18			
		3/16"	1.26	100 Mesh	3.30			
		1/4″	1.58	200 Mesh	2.98			
		3/8"	1.24	325 Mesh	3.33			

PRESSURE LOSS CALCULATION FORMULA

The pressure drop across the strainer, for water or fluids with a similar viscosity, can be calculated using the formula at the right:

 $\Delta P = \left[\frac{Q}{Cv}\right]^2$ $\Delta P = \text{Pressure Drop}$ Q = Flow in GPM Cv = Flow Coefficient

Cv VALUES

SIZE in/DN	Cv VALUES
6/150	1,000
8/200	750

The above Cv Values were determined using a $5/32^{\circ}$ perforated plastic basket in 6° and 8° strainers.

To calculate pressure drop through vessels using other than $5/32^{\prime\prime}$ perforated baskets, first calculate the pressure drop using the listed Cv, and then multiply the result by the correction factor in the Correction Factors chart to the left.

